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in which H, ~, D and K are spatial operators mechanimd  recursively by suitably defined [4,,7]
spatial filtering and smoothing algorithms. Use of this in the system kinetic energy K(O, 0) Q

+b” M(0)b results in

K(o, il) = ;V*V (1.2)

w]lere v =- [V(I),  ..0 , v(n)]  is a ]iew set of valiah]cs related to the joilit-a]iglc  rates b by

v >1)+[1 + H@{]*b (1.3)

in these ILeW variahlcs,  the kinetic energy is diagcmalized  i]] the sense that it is a simple su]n
of the squares of the total joint rates v(k) over all of the n joints. ‘1’his is in contrast to the original

.*
exl]rcssion  K(O, O) :. ~0 M(0)O wIliclL involves the Inass Inatrix  M(O) as a weighting  matrix.

‘1’hc  diagonal equations of motion ii-l C(O, v)= c are obtained in this paper t~y applying
classical l,agrangia]l  mechanics methods to the al~ove  cliagonaliml  kinetic energy. in addition to
bcillg diagonalizcd, the ki~ictic  erlergy  can also be thought of a.~ being llor~nalized.  “J’llis  lnea]ls
that the coefficient multiplying each of the terms  in the kinetic. energy expression Fkq. (1 .2) is
identically equal to ~. An alternative set of diagonal equations of nlotioll arc also derived in which
this cocfiicicllt  is not nc)rmalized.

‘1’he ‘J1otal  Joint Rates Are Time IJerivat  ives of I,agrangian  Quasi- ~oorclinatcs
~’he new varial}lcs v have a physical interplctation  as til;~e-der~;’atives  of I,a.&rangian quasi-coordinates,
silni]ar to those typically encountered [8,’3] in analytical dynamics. ‘J’llese  new variables arc related
to the original joint-angle velocities ti I?y means of tlke  collfig~lratioll-  cle~)clldellt  linear transforlna-
t i o n  m“:- D; [1 -i ll@K]* in v = nz*O. ‘1’his mrans that when the new joint velocity varial)les
v are integrated with respect to tilnc,  they do not directly result  in the joillt-angle  configuration
varial)les  0. in order to determine the joint angles, it. is first necessary to coml)ute  tile joillt-allgle
velocities 0, ‘1’llis  requires that the linear tran:fc)rlnation  m.” above be inverted ill c)rder to oL-
tain b = ( m ” )- Iv. At first, inversion of the transformation m.* looks diflicult. Ilo\vever, rcccllt
factorization r-mulls [1, 6] make it trivial to perfor[n this inversion. ‘J’he inverse trallsforlnatic)n  is

given exp l i c i t ly  by  (m”)- 1 == [1 – ll@K]*l~-4  Wllcre 11, -@, K, and 11 arc s~)atial  ol)erators  also
lnccllanimd  hy efficient spatially recursive algorithms [4, 7].

‘J’lIcre is a silnilarity  hetwcwn tlic ~arial)lcs  J and the al~g~ilar ve loc i ty ’  vector  u) tyl)ically
usc!d 10 dcsclibc  the rotational ~clocit~’  of ;i single ]igid l~otly  lvilll  rcsj)cct  tc) an illcrtial  cool  dillatc
fralne. ‘J’llis silnila]ity  can bc usQd to gain insight alJout  tllc l)lLysical  lncallin~ of tile total joillt-late
varial~les  v. l’he  dynaxnics  of  a  s ingle ligid l)c)dy is go~’er]lcd  hy tllc equatio]l  .7L + w X .7u R 7’,
ill which .7 is tile inertia tensor, and 7’ is the vector  of a~)l)lied  ]i]o]nc)lts. ‘J’llis equation of motion
is considerably simpler and elegant than that which would he obtained by using the systcm collflg-
uration  variables, which for a rigid body tvould k tyl)ically  tllc tllrec };ule] angles 0: [01, 0?, 03]
dcscril  Jillg  tllc orientation of tllc l~ody. lloivc~cr, although  t]ie dyllalnics cquatiolls  are siln~)lcr,
tlicre is a dra~vbacli:  direct integration of tllc all.gular velocity w does ]Iot produce the body oriel[-
tation. ‘J’lie angular  \relocity  i’ariahlcv,  are therefore tirlle-dc,rivat  ivcs of quasi-coordinates. ‘1’]Lcy arc
r~latcd to the time derivatit’cs  O of the colifiguration  varial)lm  O I)y ]nca]ls of a lillcar,  configuration
dcpclldelit  trallsforlnation  nL”(0),  which is a trigc)llometric  fullctio~l  of tl[e colt figuratio]l t“ariahles.
‘J’llis ]nea]ls  that u = nL*(0)b  and b =- [m.’(0)]- ‘u. ‘J’lius,  usc of the angular velocity u leads to
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very silnple equations ofmoticm. There  is a price paid for this, in that the corresponding kinematic
equation  6 = [m.*(0)]-lw  requires inversion of the transformation m*(0). In the case of a single
rigid body, it is possible to do this analytically. This ~neans that the penalty is manageable. In the
case of lnult.iple,  linlicd rigid bodies considered in this paper, the factorization results of [4,7] enable
a similar conversion from the time-derivatives of quasi-  cc)orclinatm u to the joint-angle velocities
d. Integrating the joint-angle rates  b with respect to tirnc results in the system configuration.

While there is the above similarity with single-rigid-body dynamics, there are also differ-
ences.  One important diffcmncc is that, in the lnultibody  systems of this paper, the transforlnation
m’ relating the new rate coordinates v to the joint-ang]e  rates ~ dcpcllds on quantities, such as link
lnasses and inertias,  typically associated with rigid-body dyl Lalnics. ]n tile sil@jc-rigid-body case, in
contrast, the relationship u = In*O between  the configuration-angle rates  O and the time-derivatives
of quasi-coordinates u is purely kinematical a]lcl no ]nasses  or inertias  are involved.

lhe New Forcing Term Reflects the Working Moments

Another key term in the liew equations of lnotic)n is the fcmcing  “input” {
c =. co] c(k)} appear ing

011 the right side of the equation. ‘1’his ter]n is related to tlIe applied moments T by means of the
configuration dcpcndcnt  relation  slli])

‘1’hc oJm-ators  11, ~}, K and D arc Incchanizcd by an inward filtering operation [4]. ‘.l’hc inputs
c also have a physical interpretation. ‘1’he  input  c(k)  at the L2* joint can be thought of as bcirlg
that part of the applied lnonlellt  ‘1’(k) that does mechanical \vork at this joint. ‘i’his is discussed
ilL more detail later in this paper.

The New Coriolis  Term is Computecl  Floth in Closect-1’orm  and  Recurs ive ly-———-.  —.. . . . . ..-. —..
‘1’hc  (;oriolis term C(O, u) in the diagollalimd  equationi-tif  lnotio]]  deIm]c~s q;iclratiii]ly  on the new
velocitv variables v. A closed-forln cxl)ression  fc)r this term is dcri~’ed  in this paper a]id explicitly
shows this quadratic depcndcJIre. “J’hc  (’orio]is tc] II] c a n  l)e coln~)utccl  b y  lncans c)f all ilIward
sl]atia]  rccursio~l from the tip to tlic nlallipulator  to its base. ‘J’his  inward recursion is O(N) in
that the numbcv of mathematical operatio]ls  increasm only linearly with the ]Iumber of degrcws of
frcdoln.  l’urtherlnore,  the detailed stcl)s  ill the iliwald recursion are sin)ilar to those required to
factor and diagonalize  the manipulator ]nass matrix. ~o!lscqucntly,  the c’f[ccts  of the ~oriolis  tclnl
call I)c! casi]y accounted in the recursions that diagol(alize  the cq(latiolis of ~]~otion, with very little
extra computational cost.

ltelationship  to Globally l)iagonalized  Kcluatio~~s
‘I;llc  search’ for global co”ordinatc  transfor;nations  that diagonalizc the equations of motion k an
active area of dynamics research [10- 12]. ‘J’hc goal there is to fiIid ~lobal, as opposed to local, coor-
dinate transformations in which both the colifiguratic)n  variables O and the c.orrcsponding velocity
variables 0 arc re])laced by a IIeW set of tra~lsformcd  coordinates. \f7hcn  writtcll  ill the trallsforlned
coordil)ates,  tllc e q u a t i o n s  o f  motion aro cc)ln~)lctely  clecoll]~lcd frc)ln cacll other.  Collditiolls f o r
tllc existence  of suc]l a global trallsforlllatioll  ale J$(ll-cstal)lisllt’cl  ill the tllcory  of lion-  II;uclideall
gcolnctly,  ‘1’hc g l o b a l l y  diago:lalizilig transfor]l~atioll  exists when tfle lnctric  clefi]led  by the ll~ass
lnatrix  is frcw of curvature [13]. ‘J’he trallsfor[natiol[  exists if slid only if the mass matrix is mluiva-
le]lt  to one with constant cocflicicnts ill the ncw coordinate systcln. [Jnfortunatc]y,  as l)ointcd out
in [10 12], this is rarely the case for most l)ract ical  IIlllltii)ody  systel]ls.
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in contrast,  the present paper shows that the goal of diagonalizing  ill velocity space is always
achievable for tree topology systems. ‘J’IIc  diagonalizing  transformations advanced here are applied
on the tangent space [13] of the configuration manifold instead of the configuration coordinates.
The velocity-space transformatiorls  operate On Velocities and time derivatives of configuration vari-
ables. ‘J’he goals arc therefore more modest than in the search for global transformations. IIowever,
in contrast  with the global  transforlnation  approach, diagonal ization in velocity space is shown to
mist for very gcvlcral  classes of joint-connected multibody  systmns. llrthermore,  explicit spa-
tially recursive filtering and slnoothing  algorithms are set forth to compute efficiently the required
velocity-space transforlnations.

Relationship to The Innovations Approach of Linear l’iItering  Theory
‘J’he quasi-coordinates v appearing”in  the diagollalized  equat;ol;s  of”]notio]i  a;e closely analogous to

.—. ——.

the innovations process extensively investigated [14- ]6] in the area of linear filtering and estilnation
for state space systems. q’lle innovations process [14] is a central ingredient in factoring, diago-
l~ali~,ing,  and inverting state-space systenl covariance matriuw  by lnea)}s c)f Kallnan  filtering slid
smoothing algorithms. The  innovations plocess p]ays a Similar role in the dynamics of lnechanical
systems [1, 4, 6]. I’lle analogy Mwfecw estimation theory and robot  dynamics has been one of the
ce]lt rat t IIelnes investigated  by tllc authors [.1, 7]. ‘1’his  pa~]er ~]rovides an additional cllal)ter  ill tl)is
still unfolding story.

2 Globally Diagonalizecl  Dynamics Are Elegant But Rarely Exist

l’or a manipulator systeln  with Ar dPgIC’CS  of freedom, the traditiolial  IJagraxlgiall  cquatiolls  of
motion are

(2.1)

~vllcre by definition ()* MO b=-. COl{6’M0,  b}, and M e , is tile derivative of tile ]nass lnatrix  M

with resl)ect to the hinge coordinate O(i). ‘J’he glol)al diagonal  i~.ation al)~)roach  seeks to rep]acc
tlic co]lfiguration  coordinates O and their tilile-(lcri~ati~’es  b with a new set of variables (0, ~) in
wllicl~ t.llc equations c)f lnotion are clecou~lled. “1’he  a})proacll is hascd on tile followin~  assum])tioli,
wllicl)  imposes the very stril)gent  condition that the lnass lnatrix  Pdctor  m(0) must l)c tllc gradient
of a. global coordinate transformation. ‘1’llis  assulnption  is very rarely  satisfied in practice [10 12].
IXoNetllclcss,  it is of illteTcst  to Cxalllille  tlic glol)al]y  diagollalizcd equations as all illtloductioll  tc)
the locally diagollalized cquatic)ns  adval}ced ill the l)rescllt  l)a~~~r.

for all o.



‘llc above  assumption requires that the mass matrix factor nz(Q) be the gradient of some
function ~(o). The  requirement that j be a global  coordinate transformation implies by definition
that j and m must  be both differentiable and invertible. It follows from Eq. (2.2) that the new
gc)lcralizecl  velocity vector is ~ =m*(0)O.  III terlns  of this velocity vector $, the kinetic energy is

I’+9,J)  ‘“ +J’ti.

l.ernnta  2.1: When A.ssu~71ption 2.1 holds,  the equations oj rnotiori  in the ncw coordinates
(0,19) ore

4=C Wh[rc  f = t(op’ E !lt~ (2.4)

wiih /(0) e m-] (0)e

‘J’he new equations of lnotion in l;q. (2.4) are very simple. The  mass ~natrh  is the identjty
IIlatrix,  and there are no Coriolis  forces. ‘1’he colnl)oncnt dcgrcws of frcwdoln  arc colupletc]y  clccou  -
~Jlcd and governed by independent second-order linear diflcrential  cquatiol]s.  ‘J’bus, tile coordinate
transfor~nation  f(0) provides globally diagonalizing  coordillatcs  (0, $) which replace the earlier
(0,  b) coordinates. Since T is the vector of generalized forcm corresponding to the gel~cwalized
velocities vector 0, the principle of virtual \vork implies that c is the vector of gcncralimd  forces
corresponding to the generalized velocities ti. Note that l’;q. (2.4) can be obtailiccl  altcr~latively
by deriving the I,a.grangian equations of lnotion in the 0 coordinate systcm  usilig  the diagonalizecl
expression Eq. (1 .2) for the Iiinctic  ellcrgy.

NOW that the simplicity resulting froln the global coordinate transforlnaticm  f(0) is appar-
mlt, Nrc examine cclnditions  under which Assuml)tic)n 2.1 is satisfied by multibody  systell~s.  ‘1’he
al~s~vcr is based on a ~t’ell-estal}lisl~ccl  result  frc)m no]]- l;uclidca]l geometry. It is known [1 3] that
the lnass matrix  M defines a metric tcmior  c)]i the co]lfiguration  nlanifc)ld.  Since tmlsor quantities
are il~variallt  under  coordinate transforlllations,  a Slobally  diago]lalizing  transformation exists if
al~d only if the metric tensor is a l’;uclidcall  Inctrjc tensor, i.e. ONCI  with constarlt  cocflicimits.  A
Inanifold  with a Y,uclidean metric  js said to I)c “flat”  alld tllc curtr:iturc  tcllsor  associated ~vit.11 it is
idcl~tically  zero. ‘l’he prccisc conditions for the Illctric  tensor associated with M to be a l;uclicl~an
IIlvtlic are summarized in the fc)llo~vil)g  lcllillla  [1 1 13].



In practice, the conditions in this lemma are very restrictive, and arc rarely satisfied by
practical multibody  systems [11, 12]. Even when they are satisfied, the conditions are extremely
difIlcult  to verify, as first and second derivatives of the mass matrix must he computed writh respect
to the configuration variables 0. ‘1’hc next section describes an alternative approach to diagc)nalizi]lg
the equations of motion that is brc)adly applicable to complex multibody  systems,

3 Diagonalimtion in Velocity Space is Easier

instead of diagonalizing  globally in configuration space, we look at a diagcmalizing  transforlnation
in the velocity space. q’his transformation replaces the joint-angle velocities 0 with a new set of
velocities M, without replacing the configuration variables 0. “1’he scarcli for this transformation
begins with the following factorization of the mass matrix.

Assumption 3.1 ~’here crisis  a smooth, diflcrmiifible  rind inucrtilde junction nl(0), wiih inwrse
ilcnoted by 1(0),  which jactcm the U1OSS molrix  as M(0)z= nl(0)m”(O)  for oll configuroiions.  Un-
like the previous Assumption ?.1, lhe function  m(0) here ncccl not k ihc grodicrit  of aT2y fuT2ction.

‘J’he differentiability of m insures that the vector v =--nl(0)~  is differentiable. ]nvcrtibility
of m(0) insures that time derivatives 0 of the configuration variables can he rcco~’ered froln v.
U]lder  these conditions v is a valid choice as a new generalized velocity vector.

Assumption 3.1 is much weaker than Assulnption  2.1. ()]Le consecluc’ncc  of the fact that m
is not the gradient, of a function is that the transformed velocity vector v is not the tilne derivative
of any vector of co)lfiguratio:l variables either. Its conlpohcnts  arc referred to [8] as time derivatives
of quasi-coordinates. integration of tile vector v with respect to time does not typically lcacl to tile
syste]n  con flguratioli  varial)lcs. Nonethc]ms,  findiiip; tile SJ’S(CII]  co]tfiguration  from tllc transforjncd
l’elocitics  v is a relatively easy problem. ‘1’his is done by solving tllc kiIlmnatic  cquatioll  b = l(0)v
for the time dcri~ratives of the configuration varial)lcs,  togct her with the dyIlamic  equations satisfied
by tlic acceleration variab]cs tie q’hcsc  dynalllic slid kincll)atic  equations arc sunl Inari7xx1  in tile
followi]lg  rmult.

Itcm771a 3.1: Y’hc equations of moiicJlt  using /i/f (O, v) i-oordinat[s  arc

L-1 C.(o, v) = c (3.1)

wilh tllc ncu~ L’oriolis  force Iwctor

(
C(U, v) =’ t 7iLv - ;b*MOb

)
(3.2)

uhcrc c = /( O)’l’. ?’lic kinematic cqufltio!l  to ohioi)l  lhf joini-angle rot[s U is

o = qo)v



‘1’hcsc equations of motion are considerably simpler than the original  ones in Eq. (2.]).
‘J’hey  are quite sinlilar to the globally cliagonalizcd  equations in Eq. (’2.4). ‘The mass matrix here
is once again constant and equal to the identity  matrix. ‘J’hc main difference is that the Coriolis

force tcrl[l  is no longer zero. lIowcver,  it will be shown later that this Coriolis vectcm is orthogonal
to the generalized velocity vector v. This implies that the Coriolis  term does no mechanical work.

The most cr~tical  element leading to the above diagonalized  equations is the Inass matrix
factor m((l). Clearly, a numerical (e.g. Cholesky-like) factorization of the mass matrix at each
configuration can be used to obtain  a candidate factor m(0). Ilowever,  it may not he easy to
physically interpret the corresponding tra)lsformed  variables. Also, the factors may not smoothly
dcpencl  on the configuration coordinates and thus ]night not be differentiable. More ~jrol)lcll~atic.ally,
numerical factorization procedures provide no systematic way to compute the Coriolis force term
C(t?,  v), since the derivatives of m arc required for this purpose.

lrnportant  alternatives to nulnerical  factorization arc the,  model-based operator factoriza-
tion of the manipulator mass matrix  advallcml  in [1]. ‘1’hcsc factorization are rcvicwwl in the next
section. ‘J’hc factors arc constructed using tllc sl)atially rcc.ursi~e filtering and slnoothing  Inct}l-
ods of [4, 7], and provide closed-form exp]cssions  for m(0) and its i]l~~ersc 4(0). ‘1’he algorith~ns
required to do this arc eficient, as the number c)f arith]nctical  operations incrcascs  only linearly
with the nulnber  of degrees of freedom. in addition, wc liitcr derive C1OSCCI form ex~)rcssions atlcl
computational algorithms for the new Coriolis terln  C(O, v) as Tvell.

‘J’hc diagonal equations of motion in l~q. (3.1) rcy)rcscnt  a ]niddlc ground between  the
globally decoupled equations of motion ill lmnma 2.1 and the standard equations of ]notion irl
}c1. (2.1). While they  are not quite as silnl~le  as the g;lol)ally  diago]ializml  equatiox]s  of lmlntlla  2.1,
they always exist for the broad class of tree topology systems.

4 opwator Factorization and 1 nvwsion of the Mass Matrix

Recent results [1, 6] have established that the mass lnat rix can IN factored and inverted using
]ncthods  widely used in linear filtering and estilnation  theory. ‘J’hese results arc sulnn~arized  by the
fc)llow’ing  identities, whose proof can be four(d in [1, 6].

Iclelltity  4.1

‘Jihc factorization in l(k]. (4.la) is referred to licre as tile Newtol~-l;ulcr  operator l{ ’actolizatioll,
l)ccausc it is known [1] to bc equivale]lt to tlic traditional [Ii’] rccursivc  ATew’ton-I;ulcr cqu:itions
c)f motion for a serial lnallil)u]ator. ‘J’lIc reel.)rsive algolitllllls  clnhcdflc’d  in this  factori?jatioll,  w’lii]e
quite useful [1 7] for in~wrse dyllamic.s  cc~ll-ll)lltati{)lls. are no t  by thclnselves  very useful fo r  the
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diagonalimd  equations developed iII this Ilaper. ‘J’hc primary limitation [1] is that the factors H@
and @*II” are neither square  nor invertible. ATevertheless,  F)q. (4.la) is pivotal for the development
of the alternative factorization in Eq. (4.lb). q’his altmiativc  has lmII referred to [1] as the
Innovations Operator Factorization, because of its relationship to the innovations approach [14] of
linear filtering theory. qihis  Innovations l’actorization  is essential to developing the diagonalized
equations of motion.

‘J’he factorization in ];q. (4.lb) is a closed- form , symbolic, Inodel- based (lower-triangular)-
(diagonal) -(upper-triangular) 1,1~1.” factorization of the mass Inatrix  M. ‘lhc  factorization is
model-based [1] in the sense that the manipulator model itself is usecl to prescribe each of tile
computations required. ]Iccausc of this, every computational stop has all imlnediate  physical in-
tcr~)retation.  ‘J’his  adds substantial physical insight to the factorization. “J’he factors [1 -t 1~~}{]
a]ld l) are square with the fcmmer being lower triangular and the latter diago)lal. Since the mass
matrix is positive-dcflnite, both fi~ctors [1 +- 114K]  and D are invertible. In particular, since D
is diagonal, each of its diagonal elements D(L) is invertible and positive definite. A closed-form
olwator  mpmsion for tllc inverse of the fidctor [1 -1 J14K] is provided by l;q, (4. Ic.). ‘J’he fac-
torization in Eq. (4.ld)  is a closed- for][l l.’l~l, factc)rization of M- ]. I’hcse  operator factorization
and inversion results for the mass matrix closely parallel silnilar results for covariance  factori7Jation
in estimation theory [1 ,6]. ‘J’he operator expression for M“ 1 also forlns tile foundation for O(JV)
articulated body forwarcl clyllamics  algcmithlns  [4, 7, 1 8). .Lfll of the operators involved  in the above
lna.ss  matrix factorization and inversion are synthcsimd  by spatially rccursi~’e  algorithlns,

]{e.c u rsive. .N.e.wto2~-l.j~ller  Fas@iza3 iol].
‘J’he aim of this subsection is to summarize briefly the essential ideas leading to the Ne\vton-1’;uler
Opcrator l’actorization  of the mass lnatrix  given  by

\Vhile  this is done for a. serial chain manil)ulator,  the factorization results apply  to a much more
gmcral  class of complex joillt-collllc’c.tccl  lnecha)lical  systems, including tree-collfigtllatioll mani~)u-
latc~rs w’itll flexible links and joints [7].

Consider a serial malLipulator with n rigid links as shown in l’igure 1. ‘J’hc links are
IIurnbmcd  ill i~tcreasing  order  fro?n tip to base. 2’IIC outer-most link is link 1 and the illncr-most
link is link 7?. ‘J’hc overall number of (lcgrecs-c)f-flccflol~~  for tllc manil)ulat  or is Af. ‘J’here  are two
joints  attached to the k~~ link. A coordinate fralnc (?k is attached to the inboard joint, and al~otl[er
flame  (9~_, is attached to the outboard joint. l’rtiIIicI  (’)~ is :ilso  tile llody frame for tile kih lilllic
‘J’lIt’  Icth joint  conncc.ts  the (k +- 1)”~ a]id I:’h lili!is  and its ]Ilotiol)  is dc’fille(l  as ihc IIlotioll  of fra]ne

+ . }f’hen a])])licaljle,  the free-sl)ace Inotioll  of a mallil Julator is ]t~odclcdC?~ with resl)cct to fralne  Ok
by attaching a 6 degree-of-freedom joint bet~veen tl~e base link and tile inertia] fral]ie about which
tile free- sl)ace motion occurs. IIowrever,  ill this l)al)cr,  without loss of generality and for the sake of
nc)tational simplicity, all joints are assumed to be single rotational {leg[ec-of-free{lolIl  hinges with
the kth hinge coordinate given by O(k). ]’or this case the total  Ilumber of degrees of freedoln ,V u n.
];xtcnsiol] to ]norc rotational and translalio]lal  clcglccs-c)f-f~c(’(lc]~ll  is easy [5].

()h(k)
axis vector, n’(k) = ~ c D~G de]lotws the joi]lt lna]) ]natrix  f o r  tllc IIinge  al~d tile rclati~w

s



-4 –- Towards Base l’owards ‘1’ip  --- --- ➤

Figure  I: Illustration of the links ancl hinges in a serial manipulator

spatial velocity across the k’h joint  is 1~’(k)~(k).  ‘l’lie spatial force of interaction ~(k) across the kth
joint is f(k)=-  [A’”(k),  l“”(k)]+ E I{:, where A’(k) and l’(k) are the lnoment  and force components
respectively. The G x 6 spatial inertia matrix M(k) of tlic k ‘~ li]lk ill the c~ordil~ate fral!~(! (Ok is

M(k) =- ( .7(k) m(k)j(k)  )
- m(k)j(k)

w h e r e  m(k) is the lnass,  p(lt)C 11.3 is the vector  f rom
.7(k)  CR3x3  is the rotational inertia of the k’~ link about

IT] the above notation, tllc recursive Nc\\rto]i- l(;ulm  cquatio]is  are [1, 17]

(4.3)

fvhr?re  ~’(k) is the applied molnclJt  al jc)int k. ‘J’lic IIc)lilincar,  velocity del)cnclc:lt  tcrlns  a(k) and b(k)
are respectively tllc Coriolis acceleration a~ld the g,y!oscol)ic.  force. The transforlnation  o~mator



w}lere /(k,  k – 1) is the vector from frame  [~~ to frame O(k  –- 1), and ~(k, k -- 1) E R3x3 is the
slicw-  symmetric matrix associated with the cross-product operation.

‘J’hc ‘{stacked” notation 0= col{O(k)}  E IL*’ is used to silnp]ify  the ahovc recursive Newton-

Euler equations. ‘1’his notation []] eliminates tile arguments k asscjciatcd with the individual  links
hy defining composite vectors, such as 0, which al)~)ly to tllc entire  Inanipulator  system. \Ve define

2’ =- Col{l’(k)}  c RL’U V  =- col{l~(k)}  E ilL6°

f = C.ol{f(k)}  E IR6’] {0 = Col  (t(k)}  ~ 1{s”

{
~ ,, co] a(k)}  E Il{6n I!J = Col{b(k)} E R6°

III this notation, the equations of lnotic}li arc [I, G]:

1~ =. +“11”6; c? =- d)*[H*ti  -{ (/] (4.4)

f=- l#&cl + b]; TL-Hj TMii W (4.!5)

(f)=  (J-E@)-]= [!:4):2): :Ie’’’’’x’” ‘“G)
with qh(i, j) = ~)(i,i- 1)..”d)(j+ l,j) fcjl ~ > ~. ‘1’lIc across- link rigid transforlnatio]l  operator Cd,
is dcfi]icd  as

(4.7)

Innovations Factorizat ion Ily Spatial Kalman  Filtering
‘J’Iie inll;)vations  fiact~ii~ation of th~ IIIa-SS  lllatri~ is M- =- [~-l ~~~~~]~~[~  -+ ~~d~~~]”,  aII~ that O f
its inverse is M-l = [1 - II@ K]*l~-’[I - Ilq’}K].  ‘1’hc s~~atial opcratc,i-s  ~, K  and D eInLcclcld
in thcw factorization are based on s~)atially rccursivc filtering aIld smoothing algorithIns  [],4,6].
‘J’lIc  follOwillg lliccati  cquatioli  for tl~c articulated body illcrtia 1) is a kcy part of these filtcrillg

a]ld s]nc)othillg  alp;oritlllns.
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A l g o r i t h m  4 . 1  The arlicukkd  body incriic  qt~c~ntilies  P(.), 1)(.), G(.), K(.), 7(.), 5-(.), P+ (.)
and +(., .) cm dc~ncd  by the Riccoii  cguofion

P+(o) = o
fork == I... n

P(k) = @(k,  k - l)w(k - -  l)q$*(k,  k –  l)+M(k)
l](k) =- ll(k)l’(k)H*(k)
G ( k )  == l>(k) lf”(k)l~-  ‘ ( k )

K(k +  l,k) = q5(k -i l,k)(;(k)
T(k)  = G(k)lz(k)
~(k) =- ~ - 

T(k)
}’+ (k) = T(k)r(k)

@(k + l,k) = -  +(L i l,k)Y():)
end loop

(4.s)

This is cquimlml to the following  spotiol opero!or  fqvo!io7i

M=-i’- E+ I’C;,  = 1’- E+PE;, (4.9)

Algcmith]n  4,1 is the by now classical [4, ]4] Riccat i equation of Kalman  filtering. Its solution
P(k) is the articulated body’ illcrtia  [4, 18] c)f the ~)art of the lnallipu]ator  outboard (toward  the
tip) of joint  k. ‘1’hc operator P is a block-diagonal 6n x 6n lnatrix  with its kth cfiagollal  clement
being P(k)c  IR6XG. IMne a l s o  -

(4.]0)

‘J’he operators D,G and T arc all block diagonal. ‘1’he  operators K allcl E+ arc not lJlock-
diagona],  hut  their only nonzero  l)loc!i  clenlclits ale K(k, k - 1 )’s and tj(k, k - 1 )’s respectively
along the first suhcliagonal. l’he  l>lock  clclncllts o f  t i l e  lo~ver-l)lock-t  lial~gtll:~r  ol)erator  @ ale:

l’[~,j)=-~~(i,i - 1)... ti~(j + l,j) for i > j; l~(i.j) ~ 1 for i = j; and ~~(i,j)= O for i < j. The
structure of the ol)erators  ~} and &v is identical to that of tile o])crators  ~j and t+ ill l;q. (~.6) slid
l’;q. (4.7), except that the elclnents  arc now ~~(i,j) rather than  ~(i, j).

l’hysical Meaning of Spatial Operators
tlrc suln]naii;c here th~ physical meaTling  of the ilnlJortaut  sl)atial operators involved in the inno-
vations and recursive hTeWt OII-l;Uler mass lnatris  factorizatiolls,  and in the correslmndillg  spatially
rccursivc  filtering al~d smoothing algoritllxlls  that sylltllrsim  the sl)atial olJcrators.  ‘1’hc  c)})elatc)l
@)(k, k - 1) converts a spatial force at frame  (9I~. ~ and transfor}ns it across tile kth rigid lilik ilito a
corresl)c)lldil~~  spatial  fc)rce at the illbc~ard  k’h j~illt  fl’at!le (gk . Its tralls~)osc  @-(l:, k– 1) transforlns
s~)atial  velocities and acccleratic)ns ili the o~)~)ositc  dilcctioll. ]Iotll  transforlnatiolls  arc rigid ill the
sense t?lat tllcI Lo(]y k to tvhich the OIJerator  corrcs}ml[ds  is l)y definition a ri~id hotly. ‘1’he operator.
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E@ is a shift operator whose elements arc all zero, except along its lower sub- diagonal as shown in
Eq. (4.7). In addition to producing a shift, it rigidly transfornls  all the forces in the manipulator
from the outboard to the inboard frame for each link. Its transpose S4, produces a shift and a
velocity transfer in the outward direction. ~’he operator 11 projects sJ]atial  forces at the joints iI~to
generalized force components along the joint axes. Its transpose 11” converts the scalar rotational
rates along the joint  axes into 6- dimensional relative spatial velocities across the joint,

‘J’he articulated body inertia P is the solutio]i  to the Riccati equation. Its diagonal element
P(k) at joint  k is the effective inertia [18] at fra]nc (9k of the articulated body consisting of links
I through k. The articulated body inertia captures tile ‘(bicycle chain” effect, that is, if a bicycle
chain is held firln]y  at its k ‘h link, l>(k)  is the effective s~)atial  inertia felt at that link aIld its
value depends upon the configuration of the outboard hinges. ‘1’hc articulated joint inertia D(k) at
joi]lt k is a scalar quantity obtained by projecting the articulated bcdy  inertia P(k) along the joint
axis, I’he Kalman  gain G is computed from the articulated body inertia  and appears [4] as a. key
clcmcnt  in the rccursivc  filtering and slnoothing  algorithnls.  Its primary function is to compute the
joint  articulation operator ? whose diagonal elcInent ~(k) at joint /; is used to remove the scalar
rotational inertia about that joint, thereby rendering the result,illg body outboard of this joint as
an articulated body. ‘J’l Lc operator .E~, is similar to s+, except  that it produces ‘(articulated” shifts
instead of “rigid” shifts. ‘1’he operator l) is a lower-triangular matrix rcpresentill,g an inward  spatial
Kalman  filtering recursion [4]. It is used to prol)agatc  forces ill an inward  direction. In crossing each
joint, the articulation operator ~(k) is al)l)licd. ‘1’his is the reasoll for using the ter]n articulated
force transformation to refer to the action  of this operator. Its transpose ~j” is an ll~)l)cr-triallglllar
matrix used to prollagatc  velocities in an outward clircction across articulated bodies. ‘1’he  operator
@ differs from ihe ol)crator  + in that it talm into account  the articulation at
latter dots not.

The  Reduced  hclani~]ulator  AL. at the kth l ink
~Vhilc discussing the articulate;]  bocl~ qua]ltities  and their physical meaning,
that of a rccluc(d manipvlatov. \l’c dcfille  a reduccId Inanil)u]ator  A~ at lilik  k

the joillts  which the

onc handy notion is
to be a manipulator

consisting  of just links 1 through k. ~lcarly,  associated with every link ill tllc luallipl]lator  is
a reduced Inanipulator. ‘J’he reduced ]l~allipu]ator  Al comists  of just link 1, while the rcduccd
lna J~ipulator  An associated with the nth lillk  is the wlIolc Illallipulator  itself. in gcmeral,  tile reduced
jnani~)ulator  Ak+ I consists of the reduced manipulator A~ Ivith the (k + 1)1” link added  011 to its
has?. ‘J’IIc  reduced manipulator Ak call  hc regarded as the original manipulator ill which all tllc
llillgcs  inboard of the k ‘h link ]Iave beeII locked.

5 The Innovations Factors Diagonalizc ll?he Mass Matrix

‘1’l~e  in]lc]vations  factorization in ldmltity  4.1 leads to a set of diagonal equations of motion. ‘Jo this
eIId, define the operators m(0) and l(d) as

lVI? halK!

M ( O )  4=!* nib*; &f- ‘ ( O )  4::’ t“[())t(~) (5.2)



[“””: ---
.._. —.—_— ————~ = Tn.”Q == D~I~~jI~K]* O

V(?L -1 1) = o ‘:”1
I fork = ?20”.1 I

v+(k) = @*(k-i ],k)v(k+  1 )
v(k) == D+(k) [u(k) - i  G*(k)  v+(L-)]
v(k) = v+ (k) -i H“(k)b(k) I

end loop I

—- -- . . ..— ------ ~... .—
b=t”v = [I– H+ K]*D’2V_—

“V(n+l)==O
fork == n . ..1

v+(k) == ~“(k+ l,k)v(k+ 1 )
b(k) == D-”+(k)v(k)  - q“(k)v+ (k)
v(k) = v+ (k)+- H+(k)o(k)

end  ]00]1 - - - - - 1

Table 1: U and v can be recursively computec]  from each other

2’ =- ??16 =- [1 +  H(fiqii”r--”- “’
z(o) =:-0

fork z= 1 . ..22
2(k) = q5(k, k -- l)z+(k  - 1)

T(k) = D+(k)c(k) + H(k)2(k)
2+ (k) == z(k)  + G(k)c(k)

end ]0011

Table 2: c and T can be.xeeursively  computed from each other

‘J’IIc function nt(~) so defined  satisfim  all c)f t lIe col[ditiolts  in Assumption 3.1, although verifying
tile condition of differentiability requires the following lnore careful argumc]lt.  ‘J’he operators 11
and @ arc smooth  and diffcrcntiablc  functions of tbe coordinates, so the only potential troul)le-spot
is ill tlic differentiability of tile articulated body quantities ill l;q. (4.9), l)articular]y  the inverse IJ  - 1
of tbc diagonal operator D = lll)ll’. l’lie diagonal malrix  l) is al fvays positilw dcfiuite,  invertible
alld a slnc~otll  function  of the generalized coordinates. Consc’qumltly,  ~)- 1 is always a slnootll and
diflercutial)le  function of 0. q’bus, m =- [1 -+ llq’)K]1~4 is also a smoot]l and diffcrentiahlc  matrix
function. ‘J’bus, 7n(0) satisfies all the conditiolis in Assumption 3.1.

‘J’hc R e l a t i v e  a n d  Total  Joint  ]lates Are Easily  Comput.ecl l’rom Each other—.
‘J’lIe total  joint rates v are co]nl)utcd front tlic lelative  joint rates  ~ I)y IIIca”I~s of tile tral~sformation
v = m,”b. ‘J’llis  tra]lsfc)rmation  is mcc]lalli?,cd  by Incalls  of an out~vard recursion froln tllc base of
tile manipulator to its tip. ‘J’his  outward recursion is specified Ly the algoritbln  on tile left colutllll
c)f “J’ab]c 1. ‘J’he inverse transformation O = l’v is also mecl)anized  by an outward recursion. ‘J’he
right  colu]n]l of ‘J’able 1 SIIOWS this algorithm.

Similarly, the ‘{new “ input  variables c aj)pcaring  ill the diagonalized  equation ti+ C(v,  0)=- c
are obtained from the ‘(old” inputs 7’ by tlic trallsfor]natioll  e 2- f7’. ‘J’his  is mechanized by t~le
iriward, tip-to-base recursion s~)ccified  o]~ tlic left column of ‘J’ab]c 2. ‘J’he iuverse oi~cratioll  q’ : nlc
from tbc IIQW iariablcs  c to the old variables T is also peI forlned  rccursivc]y ill an outward direction,
as s])ccificd  by tlic algorithm in tile right cc)lurnll  of ‘1’al)le  2.
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It is  relat ively easy thcmforc  to g,o back and forth  fron~ the “old” variables  b and T in
traditional robot dynamics and the “new” variables v and c ill the diagonalized  equations of this
paper. ‘J’]le  two mutually reciprocal outward recursions in ‘l’able 1 govern the relationships between

the ncw and old velocities. 1’WO mutually rccipr-ocal  inward recursions in the Table 2 govern the
relationships between the new and old inputs. Each of the above four recursions represents an
O(JV) computational algorithm, in the sense that the number of required computations increases
OIIIY linearly with the number hf of degrees of freedom.

Physical Interpretation of the Total Joint Velocities._ —_.. ——— . . . ..— .—.. — ——.
‘J’he total joint velocities v can be obtained frcnn the joint-angle velocities by means of the recursion
on the left  column of ‘l’able 1. ‘1’here  is a physical interpretation to this. Observe from ‘l’able 1 that

Dl(k)v(k)= b(k) i f5(k), w h e r e  d(k) 9 G*(k) V+(k) (5.3)

in which Vi (k) is the spatial velocity of frame C$! which is immediately adjacent to and on the
inboard side of the kt~ hinge. ‘1’his spatial velocity is due to the relative velocities b(j) at all of the
joints inboard of joint k. The spatial velocity V+ (k) represents the spatial velocity of the “base
body” of the krh reduced manipulator Ak. ‘1’hc  quantity l)+ (k) is a normalizing factor which is
used so that the kinetic elLergy is llot oIIly  diagonalized  I)ut normalized as in Eq. (1 .2).

I’;q. (5.3) states that the total  joint rate 1)4 (k)v(k) at joilLt k is the sum of two allgular
rates. One of these is the relative joint velocity b(k) at joint k bct~reen  link k and the next link k+ 1,
which is the hinge velocity at the base link of the reduced ]nanipulator  d~. ‘J’he second angular
rate given by J(k) represents an 2dditio11al  term due to the non- zero spatial velocity V(k i- 1)
of the “base-  body” of Ak. \Vhen link (k + 1) is at rest, the additional term c$(k) is zero, ancl
~]+ (k)v(k)  equals  t]le COIIIIIIOnIY used hi]lge re]ative rate b(k). ‘J’he correction term d(k) de~jellds

on the articulated body inertia quantities P(k) and D(k). It compw~sates for the joint mc)tion
induced  in all the outboard hinges by the nlotio]l  of the “base body”.

l’l~ysical interpretation of the New Generalized Forces
‘J’he-illput  variables c in the new equations of motion also IIavc a uice physical interpretation. qihis
can bc scwt from the relationship

T(k) = Dqk)c(k)  -i lI(L’)2(k) (5.4)

O]Le way to interq)ret this rclatio~lship  is to ol)scrve  that the applied lnonlcllt  ~’(k) at joint k is
the sum of two terms. ‘J’he first term l)+ (k)c(k)  is a working joint moment in the sclise  that it
directly  eutcrs  the diagonalized  ecluation  J + C(O, v)= c and  causes  the ~(acceleration”  terln  O to
either increase or decrcasc.  ‘J’he second conl~)onel]t  1/(/:):(/:)  dcl)c]lds o]lly upon and colnpcnsatcs
for all the outboard applied Inolnents 2’(1),... ,g’(k  - 1). A point worth ]Loting  here is that c(k)
depcllds  only on quantities associated w’itll  tllc reduced ]l~a:lipu]ator  Ak alone.

Extension of the Cross Product Operations to Spatial Vectors
it is \vcll kno~vn that the cross- proauct r x y of a l)iiir  ~jf 3- di~ncllsic)llal  vectors z and y can also
l)c written as .iy wlicre i E fR3x3 is the apl)ropri:ite  skew  sylnlnetric  ]natrix.  \\Tc introduce here a

new ‘(cross- product” operator for 6- dinlc]lsiO]~iil  sljatial quantities as fc)llow’s. l,et X Z-
( )

(1
tl

and

()y, c bc sl)atial  vectors w]lere a, b, c, d arc 3- dimensional vectors.
[1

‘1’hen,  the ‘(cross- l)roduct”

1.1



operation X x Y, is defined as

,..2 y z. ()tic w h e r e  X ~
( )

iio
ficihd  ‘ iii

E nt6x6  ( 5 . 5 )

‘J’hc spatial cross- product operation is anti-symmetric, i.e. X x }7 u --Y x X and satisfies the

Jacob;  identity. (Indeed,  this cross- product operation is in fact the I,ie bracket operation for the
I,ie algebra  associated with the l,ic group consisting of the @(.,. ) transformation operators). WC

also ha~~c the identity X’(”Z x }’) =: -- Z’(.Y x }7). As in the 3-dimensional case, ~ represcwts
the IIlatrix corrcsj)onding  to the spatial cross- product operation. IIowevcr,  while tllc operatio:l
“x” is anti- symmetric for spatial vectors, the matrix 1 is not skew- symmetric., i.c .X’ # - ~’,
except  in the case where the lower half of X is zero. (;ivcn spatial vectors X(k), and tile vectc)r

X == col{X(k)}~=l  E R’n, we define

~ $ diag{.~(k)}  e ll/S’’x’” so that i}’ == Col{.i(k)}’(k)}:l  E n{:” (5.6)

6 Mass Matrix Derivatives in ‘1’he Coriolis Term

The Coriolis  term C(O, v)=: t?(?i~v--~b*MOb)  is c)nc of the key elements ill the diagonalimd  equa-
tions of motion i~ + C(O, P)= c. It is appamit  that there  arc two key computations in this terln:

● ‘J’he irlcrtial time clerivativc  ?iz of tile ]nass matrix factor m in tllc in~lc)vatio]ls  factoIizatic)I~
M  =  In7n* .

● ‘1’hc first-order derivative or “sensit
joi]lt a]lgles 0.

rity” Me of the mass matrix M tvitll respect to the

‘]’his  sc!ction summarizes key results regarding the difl’erelltiation  of spatial ol)crators  which
lead to a relatively easy computation of tlic above mass ]natrix  derivatives. ‘1’he detailed derivation
of tile results is l)rovided in Appendix A.

‘1’ime Ilerivatives  of Key Spatial Operators
‘1’IIcI  inertia] time derivative i of a quantity r is taken with resl)cct to to all inert  iall-y  fixed frame.
‘lllIe local time derivative i(k)  for a qllantity  associated ~vith  l)o(ly ): is takcll w’itli  msl)ect to tl]c
/c’h bodv frame Ok . ~rall~c  ~?k rotate$  ‘J;ith  r{’spect to ine]t ia] sl)ac~  at the al}g~]lar  ~~’locity ti(]:).
‘1’lle inertial tilnc derivative i(k)  of all arbitrary G-di~l~ensional  s~)atial  vcctc)r  z(k) attacllcd  to body
k is related to its local time dcri~ativc  vector .;(k)  as follo~vs:

i(k) == i(k)+  il(k)z(k) (6.1)

w’l IcIc Q(k)  is tllc sl)atia
defined as:

cross ])roduct matrix associated \vitll  the sl)atia  vector Q(k)  Ivhicll  is

( )

w(k)
Q(k)  $ 0 (6.2)
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Ii(k) o.—. .-. .——.
M(k) o. —

D ( k )  == H I G H * H(A-)i’(k)H*(k)

G(k) 7(k)@ (k)ll”(k)l)-l(k)— —
?(k) == [1 - G(k) H(k)] -&(k) )I(k)__—

Table  3: Time Derivatives of Spatial Operators

f-2(k) A4(k)  – M(k) fi(k)

I@)

f-(k)+ it(k)?(k) – ?(k)ii(k)

‘1’al~lc3  summarizes somcofthekcy  expmsions  for the derivatives of various o~)eratorcjllalltitics.
‘1’llescex~)ressiol~s  followfmm tllescl~sitivity  cxl)rcssic)tls  dcri~red  iliA1)ljeIldix A

The  local time  derivative ~’(k), of tile articulated body iliertia  l’(k) is a key quantity rcc~uirecl
to evaluate the time derivatives of the Kal~nall  gailt G(k), the articulation operator ?(k) as well. .
as the term  tit in the Coriolis force C(V, 0)=/’(Tizv - ~0 Mob). IIec.ausc of this, the local time
derivative P require special consideration, slid this is given in tlLc IIext suh.section.

1 !.o_c.al  .Tjl?l  e ._DDrixa$_ixe._.of  t he. Axt ic u Iat eel..1  ]] eyl.ia
‘1’his section discusses the local tilnc derivative P(k) of the articulated bocly  i]lcrtia  P(k). A useful
quantity in this regard is ~(k) which is the illmtial  tilne derivative of l>(k)  with respect to the
coordinates of the reducccl manipulator Ak alo]le. l:irst  we clcfine  the quantities C16(k)  E Rc ancl
ft6 E lien as follows:

$lj(k) 2 Q(k) -- Q(k + 1) =- II”(k) ii(k),  and Q, ~ co]{%(k)} (6.3)

‘J’he al~orithm  for co]nputing  ~(k)  and }“’(k)  is ~ivcll  lJCION.

‘J’hese results are derivecl  in Apl)cndix ,\. ‘1’IIC aljove  algc)rithln  c o n s i s t s  o f  an illv.rard
recursion from the tip to the Last of the systcln. It is a semitivit.  v cquatic)]l  fc)r the art iculated

.
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body  inertia Riccati  equation. It provides a means to compute ~(k)  and the local time  derivative

~} of the articulated body inertia 1‘, in terms of the articulated body inertia itself. The recursion

is linear, with the term fi6P – PfiJ being an input. For each joint k, this term reflects the change
in the articulated body inertia due to tllc t}le rotation fib(k). llecausc  the algorithln  is an inu’ard
recursion, the time derivative ~(k) at a joint k depends only on the rotation at the joints  of the
reduced manipulator dk. The time derivative does not depend on the joints on the inward path
toward the base of the system. ‘l’he inertial time derivative of t]le articulated body inertia is .gi~m]
l)y

F(k) = i’(k)+ b(k)]’(k) - P(k) fl(k) = i(k) -1 ii(k + l)]’(k) - P(k)fi(k  -{ 1) (6.6)

Where $2) e f+ - I.

]’or convenience in later developments, observe also the follo~villg  additional  id~l~tity.
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Closed-Form Mass Matrix Sensitivity MO, ant] b* Mob——. —.-. .— .. ——-— ——— ——. —-
IM-inc

——

(6.10)

Note that fi~(i) = II(i)o(i). Also define the hlc)ck- diagonal lnatrix  operator ltl~  E R6nx6n  as

Illj(k, k) ~ D1(i)6~=i (6.11)

‘1’IIc  Inatrix  ill\ is the new quantity required to define tlIc sensitivity of the mass Il~atrix.  ‘J’l~is
lnatrix  has a very simple structure. All of its clclnents  are mm, except  for a single 6 x 6 block II(i)
at the itk location on the diagonal.

lclentity  6.3

‘J’iIc above formula is closed-form, in the sense that it explicitly computes the mass matrix
sensitivity ill terms of the operators ~J, A4, a]]d 11 aljl)caring  in tile mass matrix itself. ~’hat  the
forlnula  is closed-form is of extrenle  importance, l~ecause  it implies that the Inass Inatrix  derivatives
can be easily computed using operations and spatially recursive algc)rithms similar to those usQd
to compute the mass lnatrix itself. AS described later, this allow’s  developn~ent  of sill~~Jle  closed-
forln expressions and recursive algorithlns  to evaluate tlic Ccmio]is  term C(O, V) in the diagonalizcd
equations of Inotion.

As discussed in Appendix A, Identity 6.3 is establishe.cl  by use of the classical chai]l-rule
of differentiation, applied to the Inore elmcntary sensitivities 110,, c/~e, , and Me,  of the owators
11, {) ancl M making  u~),the mass matrix M = }]@ M@* 11’. identity 6.3 leads to the following
cxl)ression  for the term O Mob in the Coriolis  forces,

7  C1oscd-Forn~  Coriolis Forms  C(fl, v)

‘1’he  various sensitivity and time clcrivative  qllantities  colnputed  above are usQcl for the dcvelo~)nlent
of a closecl  form repression for the ~oriolis  forces term C(O, v) given below.

IS



Proof: Combine  Imnma  3.1, Eq. (6.13) and F}q. (6.8). 9

The explicit expression for the Cc)ricdis  term in identity 7.1 is a breakthrough, It explic-
itly evaluates in terms of relatively simple quantities, the wry complicated quantity C(d,  v) ==

l(ti~--+~*Meb) which depends OH Variolls derivatives of the systcm Inass matrix. Algorithm 7.1
be]c)w computes this term recursively.

Inwardly Recursive Algori thm to Ccjmpute  C(O, v)_——
X~i~go=ithnl  to-iolnI)ute  C(O, v) re~ursivcly-7s  dcscribe~ below. It is assumed that V as wdl as
the various articulated body quantities have Lcen computed using l;q. (4.8) and are available prior
to these computations.

Algorithm 7 .1

[

i(o) =“ o,
jorlc == 1.+.71

y ( k )  .:

Y(k,  k- 1) =
i(k) =

I
y ( k )  ❑

c(k)  =
end loop

y(o) =- o

&(k)P(k)
I/Y(k,k - l)i(k - 1)
}’(k,k  - l)l/J*(k, k - 1)+ x (k)+  X’(k) (7.2)

lj(k, k -- l)y(k - 1) -2 [v*(k) A4(k)-  X(k)ix”(k)] v(k)+

}T(k, k -- l)v(k  -- 1) -- i(k)7”(k)v+ (k)
+l);+(k)H(k)y@)

I’he above algorit])m proceeds froln tip-to-base and is of O(N) com~)utationa]  conl~)lcxity.

~orj.~l~s Y’orce..  IIos_N_o .WQEk
‘J’he Coriolis term C(O, v) is orthogolla]  to the gc~leralizml  velocities v and therefore does no me-
chanical  work.

Itemlita 7.1:

V“(!(o, v)=- () (7.3)

Jf similar ortllogona]ity  condition can be obtain  ccl using the ex~)licit  exprcssiol~  for tlic
Coriolis vector  C(O, V) in ldclltity  7.1:



Since the matrix expression in the middle is skew- symmetric, the overall expression is mro.

‘l’he orthogonality  of the nonlinear Coriolis  forces is similar to the orthogonality  condition
W * {W x .7u]  == O of the gyroscopic  force terll~ in tho equations of motion for a single rigid body

rotating with angular velocity o. In cc)ntrast,  the corresponding Coriolis  forces term C(O, e) in the.*
regular equations of Inotion in Hq. (2.1 ) does work, i.e., 0 C(O, 0)+ O.

lt..a~e  of change  of tile kinetic energy
‘1’he non-working nature of the Coriolis  forces has an interesting  inlJJlication. llccall that the kinetic
energy  of the systm is FC(O,  v)==~v”v.

Lemma 7.2: The mte O! change of the kilictic  cnmyy  is the dot product
ond gcnemlimd vclocilics

:iK(o, v)=+*ti = V“[c-c[o,v  )]= V*C

oj the gcncmlizecl jorccs

(7.6)

B

~Jn-norn~alizecl Diagonalizecl  Equations  of Motion
AI) alternative set of diagonalizcd  form equations  of motion can be obtained by using a slightly
different generalized vclcjcity  vector defined as

..( z ])-+,/ : [1+ mjl]{]”u (7.7)

‘1’he kinetic. energy  in these coordi]lates  is

(7.8)

‘J’l]c ]IIass lnatrix  now is the block diagonal matrix I)(O). ‘1’he  equations of lnotion  in the IICW
coordinates (O, f) are given below.

n

‘J’lIe equations of motion in l;q. (i’.!l) arc silllilar  tc] those of the IIrevious  section and can
bc derived fairly readily, They arc still diagc)nal,  I)ut tlIey differ from those in lq. (3.1) in two
rcs]]ccts. l’irst,  although the mass lnatrix  l) is diagonal, it is configuration dcpendcjlt.  hloreovcr,
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while the Coriolis forces term C(O, ~) is siInpler than C(O, v), it is not orthogonal to the generalized
velocities vector  any more. An ()(N) colnputational  algorithm for the components of C(O, ~) is

1
i(o) = o, y(o) = o

f o r k  =  10007L
x(k) == hj(kp’(k)
i(k) = lj(k,k -  l)i(k -

y ( k )  =- @(k, k - l)y(k  - -

c(k) = Il(k)y(k)
end ]OOP

8 Forward  Dynamics  ancl

O(A[) l{’orward  IIynamics

l)#J*(k, k- 1)-1 X(k)+ x”(k) (7.10)
l)+i(k)ll’(k)((k)-  [v*(k)M(k)  +- a’(k)] V(k)

Control Applications

.,
One important application is that of forward dynalnics  and numerical integration to prcclict  the
motion of the manipulator ill response to a])l)licd lnolncnts. A n  algoritll~n  I)ased u~)oli  the un-
nor]nalized  diagonalizml equations of motion in IJcmlna  7.3 js descrilmd hcm. ‘1’he  acceleration
tcrln  is given by:

{ Y D-’[lc - -  C(o,  <)] 2’ 7’- 11?/,( (8.1)

where

< ~ m + ~11*~ -  (ti,l’ -I i~*kf)V (8.2)

‘J’hc diagonalized  equation is used to obtain the following forward dynamics algorithm.

Algori thm 8.1 1 .  C’omputc  t h e  crrticulatcd  lmdy inrrtia tcrrns  ond A(k) Icnns using l;q. (~.8)
and  part of Eq. (Z 10).

Compute  the time clerivativ;s ~ of the totai joini  rcltcs v

I

-y(o) =: o
fork = 1 ...,,

((k) =- K(k, k- 1)1’(k  -  1) i i l k )  -
~(k) =- I/)(k, k - 1)-) (L’ -- 1)+ ((L)
~(k)  = D-’(A) [T(k)  -  lI(k)-)  (/:)]

end !OOP

Iisillg  the fllgori!hm:

[WV’(k) -1 V“(A” iw(k)]v(k)

Conduct  an intcgroiion  st~p to obtoin the toial joint  riltcs ( [[i o ncw tirnc  instfrr2t.



The very first time, V must  be computed explicitly (from ~ or t) using one of the algorithms
in ‘J’able 1. Algorithm 8.1 is similar to those typically [4, 18] associated with O(N) forward
dynamics. IIowever,  it is a siguific:nt  improvement because it is only a 2-swreep  algorithm involving
an inward recursion to compute t followed by an outward recursion to compute b. The Coriolis
effects arc completely accounted for in the inward sweep. Previous O(A~) algorithms typically
[1, 18] require at least  1 or even 2 preliminary inverse dynamics sweeps, prior to utilization of the
forward dynamics algorithm. hioreover,  the conlputatiollal  cost of this algorithm is quite  si]nilar
to that of the conventional O(Af) articulated body il}m-tia.  forward dynamics algorithm. While the
coordinate transformations required in this algorithm arc not required, the latter iuvolves  additional
computations involving the residual forces and the li]lk spatial accelerations.

Decoupled  Control————
‘1’lle dia~onal  equat~;ls  can also be used to design co]ltrollers that are decoupled on non-interacting.
‘J’hc dccou~)lccl  control a~)proacll  focuses OJI the dynamical behavior of the v coordinates. Satisfac-
tory perforlnance  in the original physical coordinate variables O follc)w’s from this. l’or example,
stability in v, c coordinates is equivalent to stability in the original 0, ~ coordinates. “J’he analysis
and control design howwvm is simpler lmcause the equations of lnotion used in this design  are dc-
cou~jlecl.  ‘J’he control problem can be stated in terll~s  of the variable v and E in the diagonalizcd
equations of nlotioll. q)he problem consists of finding a feedback relationship that detemines  the
illl)ut  c in terms of the velocities v. Once E is (icterlnilled,  it is J)ossible  to go back to physical
space to determine the required input lnolncllts ~’ by ]neans of t.lle relationship ~ = ?nc,  aucl to
mechanize this relationship using the inwardly  recursive algorithln  in ‘J’able  2.

ill w h i c h  c is G p o s i t i v e  diagonal coIitIol goin matrix  wridcrs tlic systcui  stable iri ihc scIisc oj
I)?JO])2111 01).

‘J’his  result follows by using the kinetic energy as a ],yapunov  functioli and observing that its tilne
derivat ive (given  in l,cnlma  7.2) ca!i  be gllarallteed  to be negative dcflnite by the choice of tile
above control approach. ‘J’his  algorithm involves rate feedback only. It can be referred to as a
‘[rate” control algorithm because the feedback quantity  is a ~~elocity,  in fact, it is a vector  of toti~l
velocities. ]t does not guarantee that the lna]iil)ulator  w’i]] eILd u]) ill a ])rcscrihed  collfiguratioll.
‘l’lie  following algoritl~ln  does this.

I/et Y = col{jjo,  jl, Q2, Q3 1 be a 12-dililellsiollal  vec to r  whose first co]nl)onelit j. is tllc

desired linear position of the encl-effecter ~vith  rcsl)ect to an itiertial reference. q’he re~i~airtilig
vectors Q], ijz, ij~ are 3 unit vectors which togctller  form an ortlionorlna]  basis attached to the end-
effecter. These three vectors are used to indicate t]]e desired orientation that the end-effecter should
reach :is a result  c)f the control action. Silllilarly,  the cnd-cffector  position, in botli translation allrl

rcJtatioll, is gi~~cn  by Y(O) =. col{yo(0),  yl (0),  yz(0),  y:i(0)}, ill ~vhicll tllc del)endcllce 011 0 is slIovII

cxp]icitly. It is easy to see that the Jacol)ian lnaj)~)in~  bet~veen the hinge rates b and the tilne
derivative of tile output J’ is givcll  by



with }1 being a suitable linear  operator [4].

The l;uclidcan  norm [Iell of the e~ror e ~ ~ – 1’(0) is a measure of the distance bctwccn

the desired and the actual configuration. “1’he following control algorithm guarantees that the
manipulator goes to the prescribed configuration ~ , while siInultaneously  driving all the velocities
to zero.

Control 8.2 The jc.cdkck control

c = - Clv - c~li$l>llc (8.6)

in which c1  and c2 arc posiiiuej diagonal control goin  lnatriccs, causes the system to reach the
prcscrihcd configuration ? and drives the wlociiics  to zero.

‘J’his  follows easily hy taking the time-derivative of the ],yapunov  function [Iv112 + lle112.

‘J’llc above control a~]proachcs  require li~ore analysis to include such efi’ects  as magnitude
boul)ds on the apl)]ied joint moments. ‘] ’he use of diagonal equations of motion for robot control is
in its infancy. ‘1’hc lnain objective of this subscctic~ll  is to itltrcxluce  the approach and to provide a
few prclilninary  examl)les. h~ore con~prchcnsive  a~)plication  of diagonalizcd ]nodels in robot control
will require further i]lvestigatic)ll.

9 Conclusions -

‘1’he  diagona]ized  equations of motions presclLted  here arc very closely relatc(l to the body of knowl-
mlgc [1 ,3,6,7] recently cleveloped by the authors on spatially recursive algorithms for manipulator
dynamics. l’he present pap~r  complelncnts  and builds ul)on tile previous work and explicitly de-
rives the diago]lalizcd I)agrangian  equations of ]Ilotio)i  wllic]i  are in addition Inechanized  by efJicient
recursive algorithms. ‘l’he focus here is on tile ]Lew equations of motion, on tile cliagol~alizing  trans-
forlnations  required to obtain them, and on the ~)hysica]  interpretation of the transformed variables.
‘1’he  results presented embed in a single diagonalized cquatic~n  several of the spatially recursive algo-
rithms  ])rcvious]y  developed. ‘1’his provides an additional step  toward an increasingly lnore suc.cillct
statc]ncnt of the equations of motion for articlllated  lnult ibody systellls.
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Appendix A: Sensitivities of Spatial Operators

Similar to 11~, we clefinc  the ~?l x ~n block diagonal OPO-ratOrs  ~l; and ]]i with Ill(i) along the block

diagonal as follows:

A]lalogous  to lq. (A.2)  we also have that ~ = ~1, + fid,

Operator Expression for C01{U”M0,6}
~~irst wcsta~-~~thut”~~ioof  tllefo]lowing  fairly obvious colll~)ollellt-le~’el  sensitivity expressions:

{( )
o fork>i

[ H ” ( k ) ] o ,  =, - L(i)h(k)
fork<i

(A.4)
o

‘1’hcse component level  sensitivities can be aggregated togetl)er  to obtain the following operator-
lcvel sensitivity expressions:

A useful  fact in deriving the above cx~)rcssions  is that

E+@. q5@,  z:q’)--I,  -j, (A.]])

‘J’IIc following IJclnlna establishes the sensitivity of ~~A4q!!*  with rcs~)cct  to O(i).

(A.12)



q’he following lemma provides an expression for the sensitivity of the mass lnatrix.

lmmrna A.2:

Me, = Jl(j  [Dl\~M - M@*DI\] +* If* (A.13)

Pr’ooj:

l’mm these expressions we obtain the following exprmsions  for co] {b” Mo, b}.

1 ‘?’00 j: 11’(’ }1OI’C  that

col{b*Mo, b} ““4~’1:’) 2col{V*l  I~4MI/’}  = 2(liag{l~”(k)DI(~)}@J41z (A.15)

}Iowucr,

diag{l’’(li)ll(k)}  = -  diag{JI(k)T~*(k)} (’.” - -Y*F* == }’”.i” V.Y, Y c n{:)
,- ]]~*

Subsiiiuii?lg  il~is i?l!o lz’q.  (/1. 15) 1<0{1s  io the czpr(ssion  ill l.’q.  (~1. l~o).  $.’q. ( A .  l~b) follouw  ~loln
the direct use of J>q. (11.7) ill I.’q. (.4. 140). Y’llc use oj I//c  c~prc. wion ~or V in J.’q. (~../) olo71g with
):q. (11. ,3) lC(I(l,<  io J:q. (A. 1’JC).
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Derivatives of articulated body inertia quantities_ — —  _ ———
W C begin here by colnputing  the sensitivities of the articulated body c{uantities.  F’irst we define
the quantities Ai(k) for all i and k in the range  {1... ?L} as follows:

{

o fork<i
A,(k)  ‘ lI(i)P(i) – P(i)]l(i)  f o r  k == i (A.16)

~~(k, ~)~i(i)+”(k,  i) f o r  k > i

As wc show in the lemma below, Ai(k) is nothing but the derivative of P(k) with respect to O(i)
for k ~ i, i.e., it represents the derivative! of the k~h articulated body  inertia with respect to the

ifh outboard hinge coordinate, We detlllc  the block diagonal matrix Ai 2 diag{Ai(k)}.  It is quite

straightforward to verify that l;q. (A.16)  can be rc-expressed at the operator level by the equation:

Lernnta  A.~:

A,(k) = I’~,(L’)fi~>i ‘“

{

o fork<i
PO, (L-) for k ~ i

(.4.22)

Pe, (k) =-
{

II(i) l’(k) - P(k)ll](i)  fo r  k ~ i
@(k, i)} ’O, (i)~~*(k,  i) fo r  k > i

(A.23)
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IIouwver,  iltc l(Mt equation UbOVC  is the sanic aS l+~q. (A. 17) (lTLd ilnplics that ~i z Ai. Y’his estc[blishes
l;q. (A. 18) ihru Eq. (A. 21). l’he conzpolmnf  lCVC1  mprcssions  in f;q. (A .22) follow directly from
);q, (A. 16) and };q. (A. 18). );q. (A .23) follouw  jrom  Fig. (A. 16) together ulith ~;q. (A. 2.2). 9

let us consider the rw?uccd manipulator Jk, and define  A(k) to be the articulated body
inertia P(k) at the k~~ link, IIy ddinition,  A(k) depwlds only u])on the coordi]lates  {O(l),. . d(k)}
and is indcpcnclellt of the coordinates {O(k +- 1), . 0 O(n)}. ‘1’l~us it, follows clearly froln Rq. (A.22)
that Ai(k) is just the sensitivity of A(k) with respect to (1(i) for each i . ‘]’hus the inertial time
derivative i(k) is given by

It is easy to see that the local time derivative ~’(k) = @(k, k – l)~(k - l)~~”(k, k - 1). JT’c  define

the operator ~ == diag{~(k)}.  Clearly from the above

l’;x~)rcssions  analogous to Eq. (A.16) and l;q. (A.17)  are given in tllc lcmlna  below<

\

f o r k  == 1...72

A(k) =  IJ(k,k -  l)i’(k -  l)$!)”(k,k  -  1) -1 rl(k)P(k)  -  P(k) fl(k)
(A.%8)

end iOO~

l’roof: li~c obtain lI;q.  (A .~~) /J71 7nvltiplyi7>g Loih sides oj liq. (A. 17) by ~(i) CInd  summing  01’cv
all i jroln 1 to n. J;q. (A. 28) is I~;C Nly  o component I(N1 rcstatcrnc?lt  of Eq. (A. 27) . B

O p e r a t o r  Hxprcssion for tiz
i;rom three sensitivity cx]~ressions  Ire ot)tain tile following Cxl)rcssioll  for nz.
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l’roof  : Note that

?’hcl’cfore,

(Jsing  ihc above in the rclotionship

,ii =- ~m,,b(i)
i=l

Icods to Eq. (A. 30)

AIJpcndix  B: Operator Identities

‘J’ILc following lmnmas  contain some useful operator idclititics  USC(I in t.l]is  pa~m.

I.ctnma IJ.1:

(11.1)

(1],2)

(11.3)

(11.’1)

y)



l’rc- olld post-multiplying this by $ and q$ rcspcctiv{ly  ii jollows  that

jront  wll ich Jiq. (11.1) follows. .Yinlifarly,  pre- Olid post -fnull  iplying };q. (11. 5) by q5 and -#P wspcct ivcly
kads  to Eq. (}1. 2).

l’rc- and l)ost-l~~tlliil~lyirlg  Eg. (4. 9) by ~ and ~“ rcspcctivcly leads to

l’ost multiplying fhe obovc by II* and noiillg Ihat

(~.8)
Y-PI1 *  – 1’7-”11 * , Ulld ‘T*]I* =: O

1((![1s to l:q. (11. 3).

(11.6)

I,emma 13.2:

l’roof: in this proof, whenever it is more conw7iic711,  UIC usc the notation A x in plaec of A. 11’or
aI/y  spatial vector X E RG and any 1 E IL3 it is easy to vcri~y  that

(1].s)

l{cca[l  that
V+ (k) = ~“(k  + I,k)l’”(k  -1 1), and v(k) =- v’+ (k) + H’qk)

Applying J;q, (B. 6’) to V(k +- 1 ) and V+ (k) uc have

v+(k) = [q$’(k + l,k)l~ot + I ) ]x  = @“(/: -1 l, I;)P(I< + 1  )+-”(/:  -! 1,/:)

= -> i~+(k)~)”(k + l,k) = qb”(k i l,k)f~(k -j 1 ) (11.9)
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